Synchronous Sequential Logic

Aziz Qaroush

Combinational versus Sequential

* Two classes of digital circuits
\triangleleft Combinational Circuits
\diamond Sequential Circuits
* Combinational Circuit
\diamond Outputs $=F$ (Inputs)
\& Function of Inputs only
\diamond NO internal memory

* Sequential Circuit
\diamond Outputs is a function of Inputs and internal Memory
\diamond There is an internal memory that stores the state of the circuit
\diamond Time is very important: memory changes with time

Introduction to Sequential Circuits

A Sequential circuit consists of:

1. Memory elements:
\diamond Latches or Flip-Flops
\diamond Store the Present State
2. Combinational Logic

\triangleleft Computes the Outputs of the circuit
Outputs depend on Inputs and Current State
\diamond Computes the Next State of the circuit
Next State also depends on the Inputs and the Present State

Two Types of Sequential Circuits

1. Synchronous Sequential Circuit

\diamond Uses a clock signal as an additional input
\diamond Changes in the memory elements are controlled by the clock
\diamond Changes happen at discrete instances of time
2. Asynchronous Sequential Circuit
\triangleleft No clock signal
\diamond Changes in the memory elements can happen at any instance of time

* Our focus will be on Synchronous Sequential Circuits
\diamond Easier to design and analyze than asynchronous sequential circuits

Synchronous Sequential Circuits

* Synchronous sequential circuits use a clock signal
* The clock signal is an input to the memory elements
* The clock determines when the memory should be updated
* The present state = output value of memory (stored)
* The next state = input value to memory (not stored yet)

The Clock

* Clock is a periodic signal = Train of pulses (1's and 0's)
* The same clock cycle repeats indefinitely over time
* Positive Pulse: when the level of the clock is 1
* Negative Pulse: when the level of the clock is 0

Rising Edge: when the clock goes from 0 to 1

* Falling Edge: when the clock goes from 1 down to 0

Clock Cycle versus Clock Frequency

* Clock cycle (or period) is a time duration
\diamond Measured in seconds, milli-, micro-, nano-, or pico-seconds
$\diamond 1 \mathrm{~ms}=10^{-3} \mathrm{sec}, 1 \mu \mathrm{~s}=10^{-6} \mathrm{sec}, 1 \mathrm{~ns}=10^{-9} \mathrm{sec}, 1 \mathrm{ps}=10^{-12} \mathrm{sec}$
Clock frequency $=$ number of cycles per second (Hertz)
$\diamond 1 \mathrm{~Hz}=1 \mathrm{cycle} / \mathrm{sec}, 1 \mathrm{KHz}=10^{3} \mathrm{~Hz}, 1 \mathrm{MHz}=10^{6} \mathrm{~Hz}, 1 \mathrm{GHz}=10^{9} \mathrm{~Hz}$
* Clock frequency $=1$ / Clock Cycle
\triangleleft Example: Given the clock cycle $=0.5 \mathrm{~ns}=0.5 \times 10^{-9} \mathrm{sec}$
\diamond Then, the clock frequency $=1 /\left(0.5 \times 10^{-9}\right)=2 \times 10^{9} \mathrm{~Hz}=2 \mathrm{GHz}$

Memory Elements

* Memory can store and maintain binary state (0's or 1's)
\diamond Until directed by an input signal to change state
* Main difference between memory elements
\diamond Number of inputs they have
\diamond How the inputs affect the binary state
* Two main types:
\checkmark Latches are level-sensitive (the level of the clock)
« Flip-Flops are edge-sensitive (sensitive to the edge of the clock)
* Flip-Flips are used in synchronous sequential circuits
* Flip-Flops are built with latches

Memory Elements - Latches

(a)

(b)

* A basic memory element, as shown in Figure (a), is the latch.
* A latch is a circuit capable of storing one bit of information.
* The latch circuit consists of two inverters; with the output of one connected to the input of the other.
* The latch circuit has two outputs, one for the stored value (\mathbf{Q}) and one for its complement (\mathbf{Q} ').
* Figure (b) shows the same latch circuit re-drawn to illustrate the two complementary outputs.
* The problem with the latch formed by NOT gates is that we can't change the stored value. For example, if the output of inverter B has logic 1 , then it will be latched forever; and there is no way to change this value.

SR Latch

* An SR Latch can be built using two NOR gates
* Two inputs: S (Set) and R (Reset)
* Two outputs: Q and \bar{Q}

SR Latch Operation

* If $S=1$ and $R=0$ then $\operatorname{Set}(Q=1, \bar{Q}=0)$
* If $S=0$ and $R=1$ then $\operatorname{Reset}(Q=0, \bar{Q}=1)$
* When $S=R=0, Q$ and \bar{Q} are unchanged
* The latch stores its outputs Q and \bar{Q} as long as $S=R=0$
* When $S=R=1, Q$ and \bar{Q} are undefined (should never be used)
* If $S=1$ and $R=0$ then Set $(Q=1, \bar{Q}=0)$
* If $S=0$ and $R=1$ then Reset $(Q=0, \bar{Q}=1)$
* When $S=R=0, Q$ and \bar{Q} are unchanged
* The latch stores its outputs Q and \bar{Q} as long as $S=R=0$
* When $S=R=1, Q$ and \bar{Q} are undefined (should never be used)

SR Latch Timing Diagram

Characteristic Equation of the SR Latch

$\mathbf{Q}(\mathrm{t})$	\mathbf{S}	R	$\mathbf{Q}(\mathrm{t}+\mathbf{1})$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	Indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Indeterminate

$$
Q(t+1)=S+R^{\prime} Q \quad S R=0
$$

$\bar{S} \bar{R}$ Latch with NAND Gates

$\%$ If $\bar{S}=0$ and $\bar{R}=1$ then Set $(Q=1, \bar{Q}=0)$

* If $\bar{S}=1$ and $\bar{R}=0$ then Reset $(Q=0, \bar{Q}=1)$
\because When $\bar{S}=\bar{R}=1, Q$ and \bar{Q} are unchanged (remain the same)
* The latch stores its outputs Q and \bar{Q} as long as $\bar{S}=\bar{R}=1$
\not When $\bar{S}=\bar{R}=0, Q$ and \bar{Q} are undefined (should never be used)

SR Latch with a Clock Input

* An additional Clock input signal C is used
* Clock controls when the state of the latch can be changed
* When $\mathbf{C =}=$, the S and R inputs have no effect on the latch

The latch will remain in the same state, regardless of S and R

* When $\mathrm{C}=1$, then normal SR latch operation

SR Latch with a Clock Input

SR Latch with a Clock Input Timing Diagram

D-Latch with a Clock Input

C	D	Next state of Q
0	X	No change
1	0	$\mathrm{Q}=0 ;$ Reset state
1	1	$\mathrm{Q}=1 ;$ Set state

(b) Function table
(a) Logic diagram

Elimination the undesirable condition of the indeterminate state in SR latch
\diamond Only one data input D
\triangleleft An inverter is added: $S=D$ and $R=\bar{D}$
$\diamond S$ and R can never be 11 simultaneously \rightarrow No undefined state
\diamond When $C=0, Q$ remains the same (No change in state)
\diamond When $C=1, Q=D$ and $\bar{Q}=\bar{D}$

D-Latch with a Clock Input

Function Table

C	D	Next State
0	X	No Change
1	0	$Q=0 ;$ Reset
1	1	$Q=1 ;$ Set

D-Latch with a Clock Input Timing Diagram
Regular D-latch response

Outputs respond to input (D) during these time periods

Characteristic Equation of the D-Latch

$$
Q(t+1)=D
$$

Graphic Symbols for Latches

* A bubble appears at the complemented output \bar{Q}

Indicates that \bar{Q} is the complement of Q

* A bubble also appears at the inputs of an $\bar{S} \bar{R}$ latch Indicates that logic-0 is used (not logic-1) to set (or reset) the latch (as in the NAND latch implementation)

Problem with Latches

* A latch is level-sensitive (sensitive to the level of the clock)
* As long as the clock signal is high ...

Any change in the value of input D appears in the output Q

* Output Q keeps changing its value during a clock cycle
* Final value of output Q is uncertain

Due to this uncertainty, latches are NOT used as memory elements in synchronous circuits

Flip-Flops

* A Flip-Flop is a better memory element for synchronous circuits
* Solves the problem of latches in synchronous sequential circuits
* A latch is sensitive to the level of the clock
* However, a flip-flop is sensitive to the edge of the clock
* A flip-flop is called an edge-triggered memory element
* It changes it output value at the edge of the clock

Positive Edge-Triggered D Flip-Flop

* Built using two latches in a master-slave configuration
* A master latch (D-type) receives external inputs
* A slave latch (SR-type) receives inputs from the master latch
* Only one latch is enabled at any given time

When $\mathbf{C = 0}$, the master is enabled and the D input is latched (slave disabled)
When $\mathbf{C = 1}$, the slave is enabled to generate the outputs (master is disabled)

Negative Edge-Triggered D Flip-Flop

* Similar to positive edge-triggered flip-flop
* The first inverter at the Master C input is removed
* Only one latch is enabled at any given time

When $\mathbf{C}=1$, the master is enabled and the D input is latched (slave disabled)
When $\mathbf{C =} \mathbf{0}$, the slave is enabled to generate the outputs (master is disabled)

Negative-Edge D Flip-Flop Timing Diagram

(a) Circuit

D-Latch vr. Edge-Triggered D Flip-Flop

Positive Edge-Triggered D Flip-Flop Another Construction

Graphic Symbols for Flip-Flops

* A Flip-Flop has a similar symbol to a Latch
* The difference is the arrowhead at the clock input C
* The arrowhead indicates sensitivity to the edge of the clock
* A bubble at the C input indicates negative edge-triggered FF

D Flip-Flop with Asynchronous Reset

* When Flip-Flops are powered, their initial state is unknown
* Some flip-flops have an Asynchronous Reset input R
* Resets the state (to logic value 0), independent of the clock
* This is required to initialize a circuit before operation
* If the R input is inverted (bubble) then $R=0$ resets the flip-flop

D Flip-Flop with Asynchronous Reset

Graphic Symbol

Function Table

R	C	D	Q	Q^{\prime}
0	X	X	0	1
1	\uparrow	0	0	1
1	\uparrow	1	1	0

D Flip-Flop with Asynchronous Reset

JK Flip-Flop

* The D Flip-Flop is the most commonly used type
* The JK is another type of Flip-Flop with inputs: J, K , and Clk
*When JK = $10 \rightarrow$ Set, When JK $=01 \rightarrow$ Reset
\star When $\mathrm{JK}=00 \rightarrow$ No change, When $\mathrm{JK}=11 \rightarrow$ Invert outputs

J	K	$\mathrm{Q}_{\mathrm{t}+1}$
0	0	Q_{t}
0	1	0
1	0	1
1	1	$\overline{\mathrm{Q}}_{\mathrm{t}}$

* JK can be implemented using D FF

JK Flip-Flop Timing Diagram

T = toggle

Characteristic Equation of the JK Flip-Flop

$\mathrm{Q}(\mathrm{t})$	J	K	$\mathrm{Q}(\mathrm{t}+1)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$
Q(t+1)=J Q^{\prime}+K^{\prime} Q
$$

TFlip-Flop

* The T (Toggle) flip-flop has inputs: T and Clk
* When $\mathrm{T}=0 \rightarrow$ No change, When $\mathrm{T}=1 \rightarrow$ Invert outputs
* The T flip-flop can be implemented using a JK flip-flop

* It can also be implemented using a D flip-flop and a XOR gate

(a) From $J K$ flip-flop

(b) From D flip-flop

(c) Graphic symbol

T Flip-Flop Timing Diagram

Characteristic Equation of the T- Flip Flop

$$
Q(t+1)=T Q^{\prime}+T^{\prime} Q
$$

Flip-Flop Characteristic Table

* Defines the operation of a flip-flop in a tabular form

Next state is defined in terms of the current state and the inputs
$Q(t)$ refers to current state before the clock edge arrives
$Q(t+1)$ refers to next state after the clock edge arrives

D Flip-Flop	
\boldsymbol{D}	$\boldsymbol{Q}(\boldsymbol{t + 1})$
$\mathbf{0}$	$\mathbf{0}$
Reset	
$\mathbf{1}$	$\mathbf{1}$
Set	

JK Flip-Flop				T Flip-Flop		
J	K		$Q(t+1)$	T		$Q(t+1)$
0	0	$Q(t)$	No change	0	$Q(t)$	No change
0	1	0	Reset	1	$Q^{\prime}(t)$	Complement
1	0	1	Set			
1	1	Q ' ${ }^{\prime}$ (Complement			

Flip-Flop Characteristic Equation

* The characteristic equation defines the operation of a flip-flop
* For D Flip-Flop: $\quad Q(t+1)=D$
* For JK Flip-Flop: $Q(t+1)=J Q^{\prime}(t)+K^{\prime} Q(t)$
* For T Flip-Flop: $\quad Q(t+1)=T \oplus Q(t)$
* Clearly, the D Flip-Flop is the simplest among the three

D Flip-Flop	
\boldsymbol{D}	$\boldsymbol{Q}(\boldsymbol{t + 1})$
$\mathbf{0}$	$\mathbf{0}$
Reset	
$\mathbf{1}$	$\mathbf{1}$
Set	

JK Flip-Flop				T Flip-Flop		
J	K		$Q(t+1)$	T		$Q(t+1)$
0	0	$Q(t)$	No change	0	$Q(t)$	No change
0	1	0	Reset	1	Q' (t)	Complement
1	0	1	Set			
1	1	Q ' (t)	Complement			

Timing Considerations for Flip-Flops

* Setup Time (T_{s}): Time duration for which the data input must be valid and stable before the arrival of the clock edge.
* Hold Time (T_{h}): Time duration for which the data input must not be changed after the clock transition occurs.
* T_{s} and T_{h} must be ensured for the proper operation of flip-flops

Analysis of Clocked Sequential Circuits

* Analysis is describing what a given circuit will do
* The output of a clocked sequential circuit is determined by

1. Inputs
2. State of the Flip-Flops

* Analysis Procedure:

1. Obtain the equations at the inputs of the Flip-Flops
2. Obtain the output equations
3. Fill the state table for all possible input and state values
4. Draw the state diagram

Analysis Example

* Is this a clocked sequential circuit? YES!
* What type of Memory? D Flip-Flops
* How many state variables?

Two state variables: A and B

* What are the Inputs?

One Input: \boldsymbol{x}

* What are the Outputs?

One Output: y

Flip-Flop Input Equations

* What are the equations on the \boldsymbol{D} inputs of the flip-flops?
$D_{A}=A x+B x$
$D_{B}=A^{\prime} \boldsymbol{x}$
* \boldsymbol{A} and \boldsymbol{B} are the current state

$$
A(t)=A, \quad B(t)=B
$$

D_{A} and D_{B} are the next state

$$
A(t+1)=D_{A}, \quad B(t+1)=D_{B}
$$

* The values of \boldsymbol{A} and \boldsymbol{B} will be $\boldsymbol{D}_{\boldsymbol{A}}$ and $\boldsymbol{D}_{\boldsymbol{B}}$ at the next clock edge

Next State and Output Equations

* The next state equations define the next state

At the inputs of the Flip-Flops

* Next state equations?

$$
\begin{aligned}
& A(t+1)=D_{A}=A x+B x \\
& B(t+\mathbf{1})=D_{B}=A^{\prime} x
\end{aligned}
$$

$\%$ There is only one output y
$*$ What is the output equation?

$$
y=(A+B) x^{\prime}
$$

State Table

* State table shows the Next State and Output in a tabular form
* Next State Equations: $\boldsymbol{A}(\boldsymbol{t}+\mathbf{1})=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{x}$ and $\boldsymbol{B}(\boldsymbol{t}+\mathbf{1})=\boldsymbol{A}^{\prime} \boldsymbol{x}$
* Output Equation: $\boldsymbol{y}=(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{x}^{\prime}$

Present State		Input	Next State		Output
A	B	\boldsymbol{x}	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Present State		Next State				Output	
		$x=0$		$x=1$		$x=0$	$x=1$
A	B	A	B	A	B	y	\boldsymbol{y}
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

State Diagram

State diagram is a graphical representation of a state table

* The circles are the states
$*$ Two state variable \rightarrow Four states (ALL values of \boldsymbol{A} and \boldsymbol{B})
* Arcs are the state transitions

Labeled with: Input \boldsymbol{x} / Output \boldsymbol{y}

Present State		Next State				Output	
		$x=0$		$x=1$		$\boldsymbol{x}=0$	$x=1$
A	B	A	B	A	B	\boldsymbol{y}	\boldsymbol{y}
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Combinational versus Sequential Analysis

Analysis of Combinational Circuits

* Obtain the Boolean Equations
* Fill the Truth Table
Output is a function of input only

Analysis of Sequential Circuits

* Obtain the Next State Equations
* Obtain the Output Equations

Next state is a function of input and current state

* Fill the State Table
* Draw the State Diagram

Output is a function of input and current state

Example with Output = Current State

* Analyze the sequential circuit shown below
* Two inputs: x and y
* One state variable A
* No separate output \rightarrow Output = current state A
* Obtain the next state equation, state table, and state diagram

Example with Output = Current State

* Flip-Flop Input Equation:

$$
D_{A}=A \oplus x \oplus y
$$

Present state		Next Inputs	state
A	x	y	A

* Next State Equation: $A(t+1)=A \oplus x \oplus y$

0		0	0	
0		0	1	
0		1	0	
0		1	1	
1		0	0	
1		0	1	
1		1	0	
1		1	1	
1		1		

Sequential Circuit with T Flip-Flops

Circuit has two T Flip-Flops
One Input x
One output y
Two state variables: A and B
Obtain the T-FF input equations
Obtain the next state equations
Fill the state table
Draw the state diagram

Recall: Flip-Flop Characteristic Equation

* For D Flip-Flop: $\quad Q(t+1)=D$
$*$ For T Flip-Flop: $\quad Q(t+1)=T \oplus Q(t)$

These equations define the Next State
*For JK Flip-Flop: $Q(t+1)=J Q^{\prime}(t)+K^{\prime} Q(t)$

D Flip-Flop		
D	$Q(t+1)$	
0	0	Rese
1		Set

T Flip-Flop		
T		$Q(t+1)$
0	Q(t)	No change
1	Q' (t)	Complement

JK Flip-Flop			
J	K		$Q(t+1)$
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	Q ' (t)	Complement

Sequential Circuit with T Flip-Flops

From Next State Equations to State Table

T Flip-Flop Input Equations:
$T_{A}=B x$
$T_{B}=x$
Next State Equations:
$A(t+1)=(B x) \oplus A$
$B(t+1)=x \oplus B$
Output Equation:
$y=A B$

Present State		$\frac{\text { Input }}{x}$	Next State		Output y
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

Notice that the output is a function of the present state only.
It does NOT depend on the input x

From State Table to State Diagram

Present State		$\frac{\text { Input }}{x}$	Next State		Output y
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

* Four States: $A B=00,01,10,11$ (drawn as circles)
* Output Equation: $y=A B$ (does not depend on input x)
* Output y is shown inside the state circle $(A B / y)$

Sequential Circuit with a JK Flip-Flops

One Input x and two state variables: A and B (outputs of Flip-Flops)
No separate output \rightarrow Output $=$ Current state $A B$
Obtain the JK input equations

Obtain the next state equations
Fill the state table

Draw the state diagram

JK Input and Next State Equations

JK Flip-Flop Input Equations:

$J_{A}=B$ and $K_{A}=B x^{\prime}$
$J_{B}=x^{\prime}$ and $K_{B}=A \oplus x$

Next State Equations:
$A(t+1)=J_{A} A^{\prime}+K_{A}^{\prime} A$
$B(t+1)=J_{B} B^{\prime}+K_{B}^{\prime} B$
Substituting:

$$
\begin{aligned}
& A(t+1)=B A^{\prime}+\left(B x^{\prime}\right)^{\prime} A=A^{\prime} B+A B^{\prime}+A x \\
& B(t+1)=x^{\prime} B^{\prime}+(A \oplus x)^{\prime} B=B^{\prime} x^{\prime}+A B x+A^{\prime} B x^{\prime}
\end{aligned}
$$

From JK Input Equations to State Table

JK Input Equations: $J_{A}=B, K_{A}=B x^{\prime}, J_{B}=x^{\prime}$ and $K_{B}=A \oplus x$

Present State		$\frac{\text { Input }}{x}$	Next State		Flip-Flop Inputs			
A	B		A	B	J_{A}	$\boldsymbol{K}_{\boldsymbol{A}}$	J_{B}	K_{B}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

From State Table to State Diagram

Four states: $A B=00,01,10$, and 11 (drawn as circles)
Arcs show the input value x on the state transition

Present State		Input x	Next State	
A	B		A	B
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Mealy versus Moore Sequential Circuits

There are two ways to design a clocked sequential circuit:

1. Mealy Machine: Outputs depend on present state and inputs
2. Moore Machine: Outputs depend on present state only

Moore Machine

Mealy Machine

* The outputs are a function of the present state and Inputs
* The outputs are NOT synchronized with the clock
* The outputs may change if inputs change during the clock cycle
* The outputs may have momentary false values (called glitches)
* The correct outputs are present just before the edge of the clock

Mealy State Diagram

* An example of a Mealy state diagram is shown on the right
* Each arc is labeled with: Input / Output
* The output is shown on the arcs of the state diagram
* The output depends on the current state and input
* Notice that State 11 cannot be reached from the other states

Example of Mealy Model

Moore Machine

* The outputs are a function of the Flip-Flop outputs only
* The outputs depend on the current state only
* The outputs are synchronized with the clock
* Glitches cannot appear in the outputs (even if inputs change)
* A given design might mix between Mealy and Moore

Moore Machine

Moore State Diagram

* An example of a Moore state diagram is shown on the right
* Arcs are labeled with input only
* The output is shown inside the state: (State / Output)
* The output depends on the current state only

Example of Moore Model

Sequential Circuit with JK Flip-Flop

Clock

State Reduction and Assignment

* Design starts with state table or diagram
* State reduction aims at exhibiting the same input-output behavior but with a lower number of internal states
* State Reduction
\diamond Reductions on the number of flip-flops and the number of gates.
\diamond A reduction in the number of states may result in a reduction in the number of flipflops.
\diamond May lead to use more gates

State Reduction

State:	a	a	b	c	d	e	f	f	g	f	g	a
Input:	0	1	0	1	0	1	1	0	1	0	0	
Output:	0	0	0	0	0	1	1	0	1	0	0	

\diamond Only the input-output sequences are important.
\diamond Two circuits are equivalent

- Have identical outputs for all input sequences;
- The number of states is not important.

Equivalent states

* Two states are said to be equivalent

*For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
*One of them can be removed.

Table 5.6
 State Table

Present State	Next State		Output	
	$\boldsymbol{x}=0$	$x=1$	$x=0$	$x=1$
a	a	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	f	0	1
e	a	f	0	1
$g \quad f$	g	f	0	1
g	a	f	0	1

Reducing the state table

$e=g($ remove $g) ;$

$d=f($ remove $f) ;$

Table 5.7
Reducing the State Table

	Next State			Output	
Present State	$\mathbf{x = 0}$	$\mathbf{x = 1}$		$\mathbf{x = 0}$	$\mathbf{x = 1}$
a	a	b		0	0
b	c	d		0	0
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	e	f	0	1	

State Reduction

* The checking of each pair of states for possible equivalence can be done systematically
* The unused states are treated as don't-care condition \Rightarrow fewer combinational gates.

Table 5.8
Reduced State Table

	Next State			Output	
Present State	$\boldsymbol{x}=\mathbf{0}$	$\boldsymbol{x}=\mathbf{1}$		$\boldsymbol{x}=\mathbf{0}$	
$\boldsymbol{x}=\mathbf{1}$					
a	a	b		0	

State Assignment

* To minimize the cost of the combinational circuits.
* Three possible binary state assignments. (m states need n-bits, where $2^{n}>m$)

Table 5.9
Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

What code assignment would you choose? Why?

State Assignment

* Any binary number assignment is satisfactory as long as each state is assigned a unique number.
* Use binary assignment 1.

Table 5.10
Reduced State Table with Binary Assignment 1

	Next State			Output	
Present State	$\mathbf{x = 0}$	$\boldsymbol{x = 1}$		$\mathbf{x = 0}$	$\boldsymbol{x}=\mathbf{1}$
000	000	001		0	0
001	010	011		0	0
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

Implication Chart

* To check possible equivalent states in table with large number of states.
* Example

Present State	Next state		Output	
	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{X}=0$	$\mathrm{x}=1$
a	d	b	0	0
b	e	a	0	0
C	g	f	0	1
d	a	d	1	0
e	a	d	1	0
f	C	b	0	0
g	a	e	1	0

Implication Chart

* Step1: draw the implication chart and place (X) in any square of a pair of states whose outputs are not equivalent.
\diamond Place $(\sqrt{ })$ for equivalent states (same outputs, same next state).

Implication Chart

* Step2: for remaining squares, enter the implied states

Present State	Next state		Output	
	$\mathrm{x}=0$	$\mathrm{X}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
a	d	b	0	0
b	e	a	0	0
c	g	f	0	1
d	a	d	1	0
e	a	d	1	0
f	c	b	0	0
g	a	e	1	0

Implication Chart

* Step3: Place $(\sqrt{ })$ for equivalent states and (X) for not equivalent states

Present State
a
b
c
d
e
f
g
$X=0 \quad$ Next state
Output
$X=1 \quad X=0 \quad X=1$

Implication Chart

* Step4: list equivalent states from squares with ($\sqrt{ }$)

* Step5: combine pairs of states into large group

$$
(a, b),(d, e, g)
$$

Implication Chart

* Step6: the final states are the equivalent states and all remaining states in state table:
$(\mathrm{a}, \mathrm{b}) \quad \mathrm{a}$
(c)
$(\mathrm{d}, \mathrm{e}, \mathrm{g}) \quad \mathrm{d}$
(f)

Implication Chart

* The table can be reduced from seven states into four states:

Presentstate	${ }_{x=0}^{\text {Nextstate }}$	${ }_{x=0}^{\text {output }}{ }_{x=1}$	Present State	Next state		Output	
a	d b	00		x=0	$\mathrm{x}=1$	$\mathrm{x}=0$	$x=1$
b	a	0 -	a	d	a	0	0
${ }^{\text {c }}$	g f a	0 1	c	d	f	0	1
${ }_{\text {e }}$	${ }^{\text {a }}$ a ${ }^{\text {d }}$	10	d	a	d	1	0
f	c b	00	f	c	a	0	0
g	a e	10					

Design of Sequential Logic

* Design Procedure

1. From the word description and specifications of the desired operation, derive a state diagram for the circuit.
2. Reduce the number of states if necessary
3. Assign binary values to the states
4. Obtain the binary-coded state table
5. Choose the type of flip-flops to be used
6. Derive the simplified flip-flop input equations and output equations
7. Draw the logic diagram

Design of Clocked Sequential Circuits

* Example:

Detect 3 or more consecutive 1's

State	A	B
$\mathrm{~S}_{0}$	0	0
$\mathrm{~S}_{1}$	0	1
$\mathrm{~S}_{2}$	1	0
$\mathrm{~S}_{3}$	1	1

Design of Clocked Sequential Circuits

- Example:

Detect 3 or more consecutive 1's

Present State	Input	Next State	Output
$A \quad B$	x	A B	y
$0 \cdots$	0	0	0
$0 \quad 0$	1	0	0
$0 \quad 1$	0	00	0
$0 \quad 1$	1	0	0
10	0	00	0
10	1	1	0
$1 \quad 1$	0	00	
11	1	1	1

Design of Clocked Sequential Circuits

* Example:

Detect 3 or more consecutive 1's
?

$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { Present } \\ \text { State }\end{array} & \text { Input } & \begin{array}{c}\text { Next } \\ \text { State }\end{array} & \text { Output } \\ \hline \boldsymbol{A} & \boldsymbol{B} & \boldsymbol{x} & \boldsymbol{A} & \boldsymbol{B}\end{array}\right] \boldsymbol{y}$ (

Synthesis using D Flip-Flops

$$
\begin{aligned}
& A(t+1)=D_{A}(A, B, x) \\
&=\sum(3,5,7) \\
& B(t+1)=D_{B}(A, B, x) \\
&=\sum(1,5,7) \\
& y(A, B, x)=\sum(6,7)
\end{aligned}
$$

Design of Clocked Sequential Circuits with D F.F.

* Example:

Detect 3 or more consecutive 1's

Synthesis using D Flip-Flops

$$
\begin{aligned}
D_{B}(A, B, x) & =\sum(1,5,7) \\
& =A x+B^{\prime} x
\end{aligned}
$$

$D_{A}(A, B, x)=\sum(3,5,7)$

$$
=A x+B x
$$

$y(A, B, x)=\sum(6,7)$

$$
=A B
$$

Design of Clocked Sequential Circuits with D F.F.

- Example:

Detect 3 or more consecutive 1's

Synthesis using D Flip-Flops

$$
\begin{aligned}
D_{A} & =A x+B x \\
D_{B} & =A x+B^{\prime} x \\
y & =A B
\end{aligned}
$$

Flip-Flop Excitation Tables

Present State	Next State	F.F. Input
$Q(t)$	$Q(t+1)$	D
$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	0
$\mathbf{1}$	$\mathbf{1}$	

$Q(t)$	$Q(t+1)$	T
$\mathbf{0}$	$\mathbf{0}$	0
$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{1}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{1}$	

Design of Clocked Sequential Circuits with JK

F.F.

- Example:

Detect 3 or more consecutive 1's

Present State	Input	Next State	Flip-Flop Inputs	
$A \quad B$	x	$A \quad B$	$J_{A} \quad K_{A}$	$J_{B} \quad K_{B}$
0	0	-	0 x	0 X
0	1	0	0 x	1 x
$0 \quad 1$	0	$0 \quad 0$	0 x	x 1
$0 \quad 1$	1	0	1 x	X 1
10	0	00	X	$0 \quad \mathrm{x}$
10	1	11	x 0	$1 \quad \mathrm{X}$
11 1	0	00	x	X
1 1	1	1	x 0	x 0

Synthesis using $J K$ F.F.
$J_{A}(A, B, x)=\sum(3)$
$d_{J A}(A, B, x)=\sum(4,5,6,7)$
$K_{A}(A, B, x)=\sum(4,6)$
$d_{K A}(A, B, x)=\sum(0,1,2,3)$
$J_{B}(A, B, x)=\sum(1,5)$
$d_{J B}(A, B, x)=\sum(2,3,6,7)$
$K_{B}(A, B, x)=\sum(2,3,6)$
$d_{K B}(A, B, x)=\sum(0,1,4,5)$

Design of Clocked Sequential Circuits with JK

F.F.

* Example:

Detect 3 or more consecutive 1's

Design of Clocked Sequential Circuits with T

 F.F.* Example:

Detect 3 or more consecutive 1's

Present State	Input	Next State		F.F. Input	
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{x}	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{T}_{A}
$\mathbf{0}$	$\boldsymbol{T}_{\boldsymbol{B}}$				
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0
0	0				
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	1	0
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	1	0	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	0	0	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	1	1	1
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	0	0	1
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	0

Synthesis using TFlip-Flops

$$
\begin{aligned}
& T_{A}(A, B, x)=\sum(3,4,6) \\
& T_{B}(A, B, x)=\sum(1,2,3,5,6)
\end{aligned}
$$

Design of Clocked Sequential Circuits with T

 F．F．－Example：
Detect 3 or more consecutive 1＇s
凡凡凡

Synthesis using T Flip－Flops

$$
\begin{aligned}
& T_{A}=A x^{\prime}+A^{\prime} B x \\
& T_{B}=A^{\prime} B+B \oplus x
\end{aligned}
$$

Design of a Binary Counter

Problem Specification:

* Design a circuit that counts up from 0 to 7 then back to 0
$000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$
When reaching 7 , the counter goes back to 0 then goes up again
* There is no input to the circuit
* The counter is incremented each cycle
* The output of the circuit is the present state (count value)
* The circuit should be designed using D-type Flip-Flops

Designing the State Diagram

* Eight states are needed to store the count values 0 to 7
* No input, state transition happens at the edge of each cycle

Three Flip-Flops are required for the eight states

Each state is

 assigned a unique binary count value
State Table

Only two columns: Present State and Next State

State changes each cycle

Deriving the Next State Equations

Present State Next State $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0} \quad \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$

000
001
001
010
010
011
011
100
$D_{2}=Q_{2} Q_{1}^{\prime}+Q_{2} Q_{0}^{\prime}+Q_{2}^{\prime} Q_{1} Q_{0}$
100
101
$D_{2}=Q_{2}\left(Q_{1}^{\prime}+Q_{0}^{\prime}\right)+Q_{2}^{\prime} Q_{1} Q_{0}$
101
110
$D_{2}=Q_{2}\left(Q_{1} Q_{0}\right)^{\prime}+Q_{2}^{\prime}\left(Q_{1} Q_{0}\right)=Q_{2} \oplus\left(Q_{1} Q_{0}\right)$
110
111
000

$$
D_{1}=Q_{1} Q_{0}^{\prime}+Q_{1}^{\prime} Q_{0}=Q_{1} \oplus Q_{0}
$$

$$
D_{0}=Q_{0}^{\prime}
$$

3-Bit Counter Circuit Diagram

Design Example: 3-bit Binary Counter Using T FFs.

State Diagram and State Table of 3-bit Binary Counter

State Table

$\frac{\text { Present State }}{A_{2} A_{1} A_{0}}$	$\frac{\text { Next State }}{A_{2} A_{1} A_{0}}$	$\frac{\text { Flip-Flop Inputs }}{T_{A 2} T_{A 1} T_{A O}}$		
(0)- 0 - ${ }^{\text {- --- }}$	(0)-0-1	-(0)	0	1
00 (1)	0100	0	1	1
0 (1) 0	$\begin{array}{lll}0 & 1 & 1\end{array}$	0	0	1
011	$1 \begin{array}{lll}1 & 0 & 0\end{array}$	1	1	1
(1) 00	$\begin{array}{lll}1 & 0 & 1\end{array}$	0	0	1
101	110	0	1	1
110	$\begin{array}{lll}1 & 1 & 1\end{array}$	0	0	1
$\begin{array}{llll}1 & 1\end{array}$	$0 \quad 00$	1	1	1

Design Example: 3-bit Binary Counter Using T FFs.

* K-Map Logic Simplification for 3-bit Binary Counter
$T_{A 2}=A_{1} A_{0}$

$T_{A O}=1$
$T_{A 1}=A_{0}$

Design Example: 3-bit Binary Counter Using T FFs.

* Draw the 3-bit Binary Counter Circuits with T FFs

Up/Down Counter with Enable

* Problem: Design a synchronous up-down T flip-flop 2-bit binary counter with a select input line S and a count enable En input. When $S=0$, the counter counts down; and when $S=1$, the counter counts up. When $\mathrm{En}=1$, the counter is in normal up- or down- counting; and En = 0 for disabling both counts.
* Solution: Required mode of operation:

Inputs

En	S		Operation
0	x		Hold status
1	0		Count Down
1	1		Count Up

State Diagram/Table for 2-bit UpDown Binary Counter

			Present State			Inputs		Next State			T flip-flops	
			No	Q1	Q0	En	S	No	Q1	Q0	T01	T0
			0	0	0	0	0	0	0	0	0	0
			0	0	0	0	1	0	0	0	0	0
			0	0	0	1	0	3	1	1	1	1
			0	0	0	1	1	1	0	1	0	1
			1	0	1	0	0	1	0	1	0	0
			1	0	1	0	1	1	0	1	0	0
	Arc La	: EnS	1	0	1	1	0	0	0	0	0	1
			1	0	1	1	1	2	1	0	1	1
			2	1	0	0	0	2	1	0	0	0
			2	1	0	0	1	2	1	0	0	0
	T Flip-Flop		2	1	0	1	0	1	0	1	1	1
Q(t)	Q(t+1)	T	2	1	0	1	1	3	1	1	0	1
0	0	0	3	1	1	0	0	3	1	1	0	0
0	1	1	3	1	1	0	1	3	1	1	0	0
1	0	1	3	1	1	1	0	2	1	0	0	1
1	1	0	3	1	1	1	1	0	0	0	1	1

Input Equations for 2-bit Up-Down Binary Counter

$\begin{aligned} & \text { EnS } \\ & \mathrm{Q}_{1} \mathrm{Q}_{0} \end{aligned}$	00	01	11	10
00	0	0	0	1
01	0	0	1	0
11	0	0	1	0
10	0	0	0	1

$\mathrm{T}_{\mathrm{Q} 1}=\mathrm{Q}_{0} \mathrm{EnS}+\mathrm{Q}_{0}{ }^{\prime} \mathrm{EnS}{ }^{\prime}$				
Ens	00	01	11	10
$\mathrm{Q}_{1} \mathrm{Q}_{0}$				
00	0	0	1	1
01	0	0	1	1
11	0	0	1	1
10	0	0	1	1
$\mathrm{T}_{\mathrm{Q} 0}=\mathrm{En}$				

- The carry out signals:
- $\mathrm{CO}_{\text {up }}$ and $\mathrm{CO}_{\text {down }}$

$$
\begin{gathered}
\mathrm{CO}_{\text {up }}=\mathrm{Q}_{0} \mathrm{Q}_{1} \mathrm{EnS} \rightarrow \\
\\
\text { up }
\end{gathered}
$$

$$
\mathrm{CO}_{\text {down }}=\mathrm{Q}_{0}{ }^{\prime} \mathrm{Q}_{1}{ }^{\prime} E n S^{\prime} \rightarrow \text { counter reached } 00 \text { and it is }
$$ counting down

Circuit for 2-bit Up-Down Binary Counter

Dealing with Unused States

* An n-bit counter has $2 n$ states, but there are occasions when we wish to use less than the total number of states available.
*The unused states may be treated as "don't care" conditions (or assigned to specific next states).
* Because outside interference may land the counter in these states, we must ensure that the counter can find its way back to a valid state.

Dealing with Unused States

*Self-correcting counter

« Ensure that when a counter enter one of its unused states, it eventually goes into one of the valid states after one or more clock pulses so it can resume normal operation.
\triangleleft Analyze the counter to determine the next state from an unused state after it is designed
\diamond If the unused states are assigned specific next states, this ensures that the circuit is self correcting by design
\diamond An alternative design could use additional logic to direct every unused state to a specific next state.

* Design your counters to be self-starting
\diamond Draw all states in the state diagram
\diamond Fill in the entire state-transition table
\diamond May limit your ability to exploit don't cares
- Choose startup transitions that minimize the logic

Counters with unused states

State Table for Counter

Present State			Next State			Flip-Flop Inputs					
A	B	C	A	B	C	J_{A}	$\boldsymbol{K}_{\boldsymbol{A}}$	J_{B}	K_{B}	Jc	K_{C}
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X

K-Maps for JK Flip Flop Inputs

	00	01	11	10	$\mathrm{K}_{\mathrm{C}}=1$
0	X	1	X	X	
1	X	1	X	X	

Counter with unused states

(a) Logic diagram

State Table for Counter

Example: 5-state counter

* Counter repeats 5 states in sequence
\diamond Sequence is $000,010,011,101,110,000$

Step 1: State diagram

Step 2: State transition table Assume D flip-flops
Present State Next State

C	B	A	$\mathrm{C}+$	$\mathrm{B}+$	$\mathrm{A}+$
0	0	0	0	1	0
0	0	1	X	X	X
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	X	X	X
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	X	X	X

Example: 5-state counter

Step 3: Encode next state functions

$\mathrm{C}+=\mathrm{A}$

$B+=B^{\prime}+A^{\prime} C^{\prime}$

$\mathrm{A}+=\mathrm{BC}^{\prime}$

Example: 5-state counter

Step 4: Implement the design

Recall that a D flip flop also produces Q^{\prime} so $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and C^{\prime} would all be available without any extra inverters

Is our design robust?

* What if the counter starts in a 111 state?

5-state counter

* Back-annotate our design to check it

Fill in state transition table

