Synchronous Sequential Logic

Aziz Qaroush

Combinational versus Sequential

Two classes of digital circuits

- Combinational Circuits
- ♦ Sequential Circuits

Combinational Circuit

- \diamond Outputs = F(Inputs)
- → Function of Inputs only
- ♦ NO internal memory

Inputs Circuit Outputs

Sequential Circuit

- ♦ Outputs is a function of Inputs and internal Memory
- ♦ There is an internal memory that stores the state of the circuit
- ♦ Time is very important: memory changes with time

Introduction to Sequential Circuits

A Sequential circuit consists of:

- 1. Memory elements:

 - ♦ Store the Present State

Inputs Combinational Logic Present State Memory Elements Outputs Next State

2. Combinational Logic

♦ Computes the Outputs of the circuit

Outputs depend on Inputs and Current State

♦ Computes the Next State of the circuit

Next State also depends on the Inputs and the Present State

Two Types of Sequential Circuits

1. Synchronous Sequential Circuit

- ♦ Uses a clock signal as an additional input
- ♦ Changes in the memory elements are controlled by the clock
- ♦ Changes happen at discrete instances of time

2. Asynchronous Sequential Circuit

- ♦ No clock signal
- ♦ Changes in the memory elements can happen at any instance of time
- Our focus will be on Synchronous Sequential Circuits
 - → Easier to design and analyze than asynchronous sequential circuits

Synchronous Sequential Circuits

- Synchronous sequential circuits use a clock signal
- The clock signal is an input to the memory elements
- The clock determines when the memory should be updated
- The present state = output value of memory (stored)
- The next state = input value to memory (not stored yet)

The Clock

- Clock is a periodic signal = Train of pulses (1's and 0's)
- The same clock cycle repeats indefinitely over time
- Positive Pulse: when the level of the clock is 1
- ❖ Negative Pulse: when the level of the clock is 0
- Rising Edge: when the clock goes from 0 to 1
- * Falling Edge: when the clock goes from 1 down to 0

Clock Cycle versus Clock Frequency

- Clock cycle (or period) is a time duration
 - ♦ Measured in seconds, milli-, micro-, nano-, or pico-seconds
 - \Rightarrow 1 ms = 10⁻³ sec, 1 µs = 10⁻⁶ sec, 1 ns = 10⁻⁹ sec, 1 ps = 10⁻¹² sec
- Clock frequency = number of cycles per second (Hertz)
 - \Rightarrow 1 Hz = 1 cycle/sec, 1 KHz = 10^3 Hz, 1 MHz = 10^6 Hz, 1 GHz = 10^9 Hz
- Clock frequency = 1 / Clock Cycle

 - \Rightarrow Then, the clock frequency = $1/(0.5 \times 10^{-9}) = 2 \times 10^{9}$ Hz = 2 GHz

Memory Elements

- Memory can store and maintain binary state (0's or 1's)
 - ♦ Until directed by an input signal to change state
- Main difference between memory elements
 - ♦ Number of inputs they have
 - → How the inputs affect the binary state
- Two main types:

 - ♦ Flip-Flops are edge-sensitive (sensitive to the edge of the clock)
- Flip-Flips are used in synchronous sequential circuits
- Flip-Flops are built with latches

Memory Elements - Latches

- ❖ A basic memory element, as shown in Figure (a), is the latch.
- ❖ A latch is a circuit capable of storing one bit of information.
- ❖ The latch circuit consists of two inverters; with the output of one connected to the input of the other.
- ❖ The latch circuit has two outputs, one for the stored value (Q) and one for its complement (Q').
- ❖ Figure (b) shows the same latch circuit re-drawn to illustrate the two complementary outputs.
- ❖ The problem with the latch formed by NOT gates is that we can't change the stored value. For example, if the output of inverter B has logic 1, then it will be latched forever; and there is no way to change this value.

SR Latch

- An SR Latch can be built using two NOR gates
- ❖ Two inputs: S (Set) and R (Reset)
- \clubsuit Two outputs: Q and \overline{Q}

S R	QQ	
1 0 0 0	1 0 1 0	Set state
0 1 0 0	$\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array}$	Reset state
1 1	0 0	Undefined

(b) Function table

SR Latch Operation

- ❖ If S = 1 and R = 0 then Set $(Q = 1, \overline{Q} = 0)$
- ❖ If S = 0 and R = 1 then Reset $(Q = 0, \overline{Q} = 1)$
- ❖ When S = R = 0, Q and \overline{Q} are unchanged
- ❖ The latch stores its outputs Q and \overline{Q} as long as S = R = 0
- ❖ When S = R = 1, Q and \overline{Q} are undefined (should never be used)
- \clubsuit If S=1 and R=0 then Set $(Q=1, \overline{Q}=0)$
- \clubsuit If S=0 and R=1 then Reset $(Q=0, \overline{Q}=1)$
- ❖ When S = R = 0, Q and \overline{Q} are unchanged
- \clubsuit The latch stores its outputs Q and \overline{Q} as long as S=R=0
- * When S = R = 1, Q and \overline{Q} are undefined (should never be used)

SR Latch Timing Diagram

Characteristic Equation of the SR Latch

Q(t)	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	Indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Indeterminate

5 R Latch with NAND Gates

\overline{S} \overline{R}	$Q \overline{Q}$				
0 1 1 1	1 0 1 0	Set state			
1 0 1 1	0 1 0 1	Reset state			
0 0	1 1	Undefined			
(b) Function table					

Known as the \overline{S} \overline{R} Latch

- \clubsuit If $\overline{S}=0$ and $\overline{R}=1$ then Set $(Q=1, \overline{Q}=0)$
- \clubsuit If $\overline{S}=1$ and $\overline{R}=0$ then Reset $(Q=0, \overline{Q}=1)$
- When $\bar{S} = \bar{R} = 1$, Q and \overline{Q} are unchanged (remain the same)
- **The latch stores its outputs** Q and \overline{Q} as long as $\overline{S} = \overline{R} = 1$
- When $\bar{S} = \bar{R} = 0$, Q and \overline{Q} are undefined (should never be used)

SR Latch with a Clock Input

- ❖ An additional Clock input signal C is used
- Clock controls when the state of the latch can be changed
- ❖ When C=0, the S and R inputs have no effect on the latch
 The latch will remain in the same state, regardless of S and R
- ❖ When C=1, then normal SR latch operation

SR Latch with a Clock Input

Function Table					
С	S	R	Next State		
0 1 1 1	X 0 0 1 1	X 0 1 0	No Change No Change Q=0; Reset Q=1; Set Indeterminate		

SR Latch with a Clock Input Timing Diagram

D-Latch with a Clock Input

Elimination the undesirable condition of the indeterminate state in SR latch

- \Leftrightarrow Only one data input *D*
- \Leftrightarrow An inverter is added: S = D and $R = \overline{D}$
- \diamondsuit S and R can never be 11 simultaneously \rightarrow No undefined state
- \diamond When C = 0, Q remains the same (No change in state)
- \Leftrightarrow When C = 1, Q = D and $\overline{Q} = \overline{D}$

D-Latch with a Clock Input

D-Latch with a Clock Input Timing Diagram

Regular D-latch response

Characteristic Equation of the D-Latch

Q(t)	D	Q(t + 1)
0	0	0
0	1	1
1	0	0
1	1	1

$$Q(t+1) = D$$

Graphic Symbols for Latches

- * A bubble appears at the complemented output \overline{Q} Indicates that \overline{Q} is the complement of Q
- ❖ A bubble also appears at the inputs of an \overline{S} \overline{R} latch Indicates that **logic-0** is used (not logic-1) to set (or reset) the latch (as in the NAND latch implementation)

Problem with Latches

- ❖ A latch is **level-sensitive** (sensitive to the level of the clock)
- ❖ As long as the clock signal is high ...
 Any change in the value of input D appears in the output Q
- ❖ Output *Q* keeps changing its value during a clock cycle
- ❖ Final value of output *Q* is uncertain

Due to this uncertainty, latches are NOT used as memory elements in synchronous circuits

Flip-Flops

- ❖ A Flip-Flop is a better memory element for synchronous circuits
- Solves the problem of latches in synchronous sequential circuits
- A latch is sensitive to the level of the clock
- However, a flip-flop is sensitive to the edge of the clock
- ❖ A flip-flop is called an edge-triggered memory element
- It changes it output value at the edge of the clock

Positive Edge-Triggered D Flip-Flop

- Built using two latches in a master-slave configuration
- ❖ A master latch (D-type) receives external inputs
- ❖ A slave latch (SR-type) receives inputs from the master latch
- ❖ Only one latch is enabled at any given time
 When C=0, the master is enabled and the D input is latched (slave disabled)
 When C=1, the slave is enabled to generate the outputs (master is disabled)

Negative Edge-Triggered D Flip-Flop

- Similar to positive edge-triggered flip-flop
- The first inverter at the Master C input is removed
- Only one latch is enabled at any given time

When C=1, the master is enabled and the D input is latched (slave disabled)

When C=0, the slave is enabled to generate the outputs (master is disabled)

Outputs
change
when C
changes
from 1 to 0

Negative-Edge D Flip-Flop Timing Diagram

D-Latch vr. Edge-Triggered D Flip-Flop

Positive Edge-Triggered D Flip-Flop Another Construction

Graphic Symbols for Flip-Flops

- A Flip-Flop has a similar symbol to a Latch
- ❖ The difference is the arrowhead at the clock input C
- The arrowhead indicates sensitivity to the edge of the clock
- ❖ A bubble at the C input indicates negative edge-triggered FF

D Flip-Flop with Asynchronous Reset

- ❖ When Flip-Flops are powered, their initial state is unknown
- Some flip-flops have an Asynchronous Reset input R
- * Resets the state (to logic value 0), independent of the clock
- This is required to initialize a circuit before operation
- \clubsuit If the R input is inverted (bubble) then R = 0 resets the flip-flop

Inputs			Out	outs
R	Data	Clk	Q	\overline{Q}
0	X	X	0	1
1	0	↑	0	1
1	1	↑	1	0

Function Table

D Flip-Flop with Asynchronous Reset

Function Table						
R	C	D	Q	Q'		
0	Χ	Х	0	1		
1	\uparrow	0	0	1		
1	↑	1	1	0		

D Flip-Flop with Asynchronous Reset

JK Flip-Flop

- The D Flip-Flop is the most commonly used type
- The JK is another type of Flip-Flop with inputs: J, K, and Clk

•	When	JK =	10 -	Set,	When	JK =	01	-	Reset
---	------	------	------	------	------	------	----	----------	-------

- ❖ When JK = 00 → No change, When JK = 11 → Invert outputs
- JK can be implemented using D FF

JK	Q_{t+1}
0 0	Qt
0 1	0
1 0	1
1 1	Qt

JK Flip-Flop Timing Diagram

Characteristic Equation of the JK Flip-Flop

J	K	Q(t + 1)
0	0	0
0	1	0
1	0	1
1	1	1
0	0	1
0	1	0
1	0	1
1	1	0
	0 0 1 1 0 0	 0 0 1 1 0 0 1 1 0 0

$$Q(t+1) = JQ' + K'Q$$

T Flip-Flop

- ❖ The T (Toggle) flip-flop has inputs: T and Clk
- ❖ When T = 0 → No change, When T = 1 → Invert outputs

Т	Q_{t+1}
0	Qt
1	Qt

- The T flip-flop can be implemented using a JK flip-flop
- It can also be implemented using a D flip-flop and a XOR gate

T Flip-Flop Timing Diagram

Characteristic Equation of the T- Flip Flop

Q(t)	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

$$Q(t+1) = TQ'+T'Q$$

Flip-Flop Characteristic Table

- Defines the operation of a flip-flop in a tabular form
- Next state is defined in terms of the current state and the inputs Q(t) refers to current state **before** the clock edge arrives Q(t+1) refers to next state **after** the clock edge arrives

D Flip-Flop					
D	Q(t+1)			
0	0	Reset			
1	1	Set			

JK Flip-Flop						
JK		Q(t+1)				
0 0	Q(t)	No change				
0 1	0	Reset				
1 0	1	Set				
1 1	Q'(t)	Complement				

T Flip-Flop					
T	Q(t+1)				
0	Q(t)	No change			
1	Q'(t)	Complement			

Flip-Flop Characteristic Equation

- The characteristic equation defines the operation of a flip-flop
- ❖ For D Flip-Flop: Q(t+1) = D
- ❖ For JK Flip-Flop: Q(t + 1) = J Q'(t) + K' Q(t)
- ❖ For T Flip-Flop: $Q(t+1) = T \oplus Q(t)$
- Clearly, the D Flip-Flop is the simplest among the three

D Flip-Flop					
D	Q(t+1)			
0	0	Reset			
1	1	Set			

JK Flip-Flop						
JK		Q(t+1)				
0 0	Q(t)	No change				
0 1	0	Reset				
1 0	1	Set				
1 1	Q'(t)	Complement				

T Flip-Flop					
T	Q(t+1)				
0	Q(t)	No change			
1	Q'(t)	Complement			

Timing Considerations for Flip-Flops

- Setup Time (T_s): Time duration for which the data input must be valid and stable before the arrival of the clock edge.
- ❖ Hold Time (T_h): Time duration for which the data input must not be changed after the clock transition occurs.
- ❖ T_s and T_h must be ensured for the proper operation of flip-flops

Analysis of Clocked Sequential Circuits

- Analysis is describing what a given circuit will do
- The output of a clocked sequential circuit is determined by
 - 1. Inputs
 - 2. State of the Flip-Flops

❖ Analysis Procedure:

- 1. Obtain the equations at the inputs of the Flip-Flops
- 2. Obtain the output equations
- 3. Fill the state table for all possible input and state values
- 4. Draw the state diagram

Analysis Example

Is this a clocked sequential circuit?

YES!

What type of Memory?

D Flip-Flops

How many state variables?

Two state variables: A and B

What are the Inputs?

One Input: *x*

What are the Outputs?

One Output: *y*

Flip-Flop Input Equations

❖ What are the equations on the *D* inputs of the flip-flops?

$$D_A = A x + B x$$

$$D_B = A' x$$

❖ A and B are the current state

$$A(t) = A$$
, $B(t) = B$

 $\clubsuit D_A$ and D_B are the **next state**

$$A(t+1) = D_A$$
, $B(t+1) = D_B$

 \clubsuit The values of A and B will be D_A and D_B at the next clock edge

Next State and Output Equations

The next state equations define the next state

At the **inputs** of the Flip-Flops

❖ Next state equations?

$$A(t+1) = D_A = A x + B x$$

$$B(t+1) = D_B = A' x$$

- There is only one output y
- What is the output equation?

$$y = (A + B) x'$$

State Table

- State table shows the Next State and Output in a tabular form
- ❖ Next State Equations: A(t + 1) = A x + B x and B(t + 1) = A' x
- \diamond Output Equation: y = (A + B) x'

Present State		Input	Next State		Output	
A	В	X	A	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Another form of the state table

Present		N	Next State				Output	
	ate	x =	0	X =	= 1	x = 0	<i>x</i> = 1	
A	В	A	В	A	В	y	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

State Diagram

- State diagram is a graphical representation of a state table
- The circles are the states
- \clubsuit Two state variable \Rightarrow Four states (ALL values of A and B)
- Arcs are the state transitions
 Labeled with: Input x / Output y

Present		N	Next State				Output	
	ate	x = 0 $x = 1$		x = 0	<i>x</i> = 1			
A	В	A	В	A	В	y	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

Combinational versus Sequential Analysis

Analysis of Combinational Circuits

- Obtain the Boolean Equations
- Fill the Truth Table

Output is a function of input only

Analysis of Sequential Circuits

- Obtain the Next State Equations
- Obtain the Output Equations
- Fill the State Table
- Draw the State Diagram

Next state is a function of input and current state

Output is a function of input and current state

Example with Output = Current State

- Analyze the sequential circuit shown below
- \bigstar Two inputs: x and y
- ❖ One state variable A
- ❖ No separate output → Output = current state A
- Obtain the next state equation, state table, and state diagram

Example with Output = Current State

$$D_A = A \oplus x \oplus y$$

❖ Next State Equation: $A(t + 1) = A \oplus x \oplus y$

Present state	Inp	uts	Next state
A	х	y	A
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Sequential Circuit with T Flip-Flops

Recall: Flip-Flop Characteristic Equation

❖ For D Flip-Flop: Q(t+1) = D

***** For T Flip-Flop: $Q(t+1) = T \oplus Q(t)$

These equations define the Next State

❖ For JK Flip-Flop: Q(t + 1) = J Q'(t) + K' Q(t)

D Flip-Flop						
D	Q(t+1)				
0	0	Reset				
1	1	Set				

T Flip-Flop					
T	(Q(t+1)			
0	Q(t)	No change			
1	Q'(t)	Complement			

JK Flip-Flop						
JK	Q(t+1)					
0 0	Q(t)	No change				
0 1	0	Reset				
1 0	1	Set				
1 1	Q'(t)	Complement				

Sequential Circuit with T Flip-Flops

From Next State Equations to State Table

T Flip-Flop Input Equations:

$$T_A = B x$$

$$T_B = x$$

Next State Equations:

$$A(t+1) = (B x) \oplus A$$

$$B(t+1) = x \oplus B$$

Output Equation:

$$y = A B$$

Present State				ext ate	Output	
A	В	X	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

Notice that the output is a function of the present state only.

It does **NOT** depend on the input x

From State Table to State Diagram

Present State		Input		ext ate	Output
A	В	X	A	В	у у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

- * Four States: AB = 00, 01, 10, 11 (drawn as circles)
- Output Equation: y = A B (does not depend on input x)
- \diamond Output y is shown inside the state circle (AB/y)

Sequential Circuit with a JK Flip-Flops

One Input x and two state variables: A and B (outputs of Flip-Flops)

No separate output \rightarrow Output = Current state A B

JK Input and Next State Equations

JK Flip-Flop Input Equations:

Substituting:

$$A(t+1) = B A' + (Bx')'A = A'B + AB' + Ax$$

$$B(t+1) = x'B' + (A \oplus x)'B = B'x' + A B x + A'B x'$$

Clock

From JK Input Equations to State Table

JK Input Equations: $J_A = B$, $K_A = B$, X', $J_B = X'$ and $K_B = A \oplus X$

	sent ate	Input		ext ate	Flip-Flop Inputs			
A	В	X	A	В	J _A	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

From State Table to State Diagram

Four states: AB = 00, 01, 10, and 11 (drawn as circles)

Arcs show the input value x on the state transition

Present State		Input	Next State	
A	В	X	A	В
0	0	0	0	1
0	0	1	0	0
0	1	0	1	1
0	1	1	1	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Mealy versus Moore Sequential Circuits

There are two ways to design a clocked sequential circuit:

- 1. Mealy Machine: Outputs depend on present state and inputs
- 2. Moore Machine: Outputs depend on present state only

Mealy Machine

- The outputs are a function of the present state and Inputs
- ❖ The outputs are NOT synchronized with the clock
- The outputs may change if inputs change during the clock cycle
- The outputs may have momentary false values (called glitches)
- The correct outputs are present just before the edge of the clock

Mealy State Diagram

- An example of a Mealy state diagram is shown on the right
- Each arc is labeled with:
 Input / Output
- The output is shown on the arcs of the state diagram
- The output depends on the current state and input
- Notice that State 11 cannot be reached from the other states

Example of Mealy Model

Moore Machine

- The outputs are a function of the Flip-Flop outputs only
- The outputs depend on the current state only
- The outputs are synchronized with the clock
- Glitches cannot appear in the outputs (even if inputs change)
- ❖ A given design might mix between Mealy and Moore

Moore State Diagram

- An example of a Moore state diagram is shown on the right
- Arcs are labeled with input only
- The output is shown inside the state: (State / Output)
- The output depends on the current state only

Example of Moore Model

Sequential Circuit with JK Flip-Flop

State Reduction and Assignment

- Design starts with state table or diagram
- State reduction aims at exhibiting the same input-output behavior but with a lower number of internal states

State Reduction

- Reductions on the number of flip-flops and the number of gates.
- ♦ A reduction in the number of states may result in a reduction in the number of flipflops.
- ♦ May lead to use more gates

State Reduction

```
State: a a b c d e f f g f g a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 1 1 0 1 0 0
```

- ♦ Only the input-output sequences are important.
- ♦ Two circuits are equivalent
 - Have identical outputs for all input sequences;
 - The number of states is not important.

Equivalent states

- Two states are said to be equivalent
 - ❖For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
 - One of them can be removed.

Table 5.6 *State Table*

		Next	State	Out	put
	Present State	x = 0	x = 1	x = 0	x = 1
	а	а	b	0	0
	b	c	d	0	0
	c	a	d	0	0
	d	e	f	0	1_
	e	а	\overline{f}	0	1
e = 9	g <u>f</u>	g	f	0	1_/
·	g	а	f	0	1

Equivalent states
Remove state

Reducing the state table

- \Leftrightarrow e = g (remove g);
- d = f (remove f);

Table 5.7 *Reducing the State Table*

	Next :	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	e	f	0	1	

State Reduction

- The checking of each pair of states for possible equivalence can be done systematically
- ❖ The unused states are treated as don't-care condition ⇒ fewer combinational gates.

Table 5.8 *Reduced State Table*

Present State	Next S	State	Output		
	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

State Assignment

- To minimize the cost of the combinational circuits.
- ❖ Three possible binary state assignments. (m states need n-bits, where $2^n > m$)

Table 5.9 *Three Possible Binary State Assignments*

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

What code assignment would you choose? Why?

State Assignment

- Any binary number assignment is satisfactory as long as each state is assigned a unique number.
- Use binary assignment 1.

Table 5.10 *Reduced State Table with Binary Assignment 1*

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

- ❖ To check possible equivalent states in table with large number of states.
- Example

Present State	Nex	t state	Out	put
	X=0	X=1	X=0	X=1
a	d	b	0	0
b	e	a	0	0
С	g	f	0	1
d	a	d	1	0
e	а	d	1	0
f	c	b	0	0
g	a	е	1	0

- Step1: draw the implication chart and place (X) in any square of a pair of states whose outputs are not equivalent.
 - \Rightarrow Place ($\sqrt{}$) for equivalent states (same outputs, same next state).

b							Present State	Next	t state	Out	out
С	х	x				since output not equivaler		X=0	X=1	X=0	X=1
d	х	X	χ é	 		d and e a	re a	d	b	0	0
						the same	b	е	a	0	0
е	Х	X	Х	۷ ٤			С	g	f	0	1
f			v	v	v	1	d	a	d	1	0
•			X	X	X		e	а	d	1	0
g	Х	X	Х			х	f	c	b	0	0
	<u> </u>	<u></u>		ـــا	<u> </u>	<u> </u>	g	a	е	1	0
	а	b	С	d	е	ı					

Step2: for remaining squares, enter the implied states

Present State	Next	state	Out	put
	X=0	X=1	X=0	X=1
а	d	b	0	0
b	е	a	0	0
С	g	f	0	1
d	a	d	1	0
е	a	d	1	0
f	C	b	0	0
g	a	е	1	0

Step3: Place $(\sqrt{})$ for equivalent states and (X) for not equivalent states

b	a,b						Present State	Next	state	Out	out
	ld,e							X=0	X=1	X=0	X=1
С	X	X					a	d	b	0	0
d	x	X	x				b	e	а	0	0
e	x	x	x	٧			С	g	f	0	1
						1	d	a	d	1	0
f	c,d	c,e a,b	X	X	X		е	a	d	1	0
g	X	X	x	d,e	d,∉	x	f	С	b	0	0
0		*	*	V			g	a	e	1	0
	а	b	С	d	e	f	J				

Step4: list equivalent states from squares with $(\sqrt{})$

Step5: combine pairs of states into large group

Step6: the final states are the equivalent states and all remaining states in state table:

$$(a,b) \implies a$$

(c)

$$(d,e,g) \implies d$$

(f)

❖ The table can be reduced from seven states into four states:

Present State	Next	state	Out	put					
	X=0	X=1	X=0	X=1	Present State	Next	state	Out	put
a	d	b	0	0		X=0	X=1	X=0	X=1
-b	е	a	 0	0 -	a	d	a	0	0
c d	g a	t d	0 1	0	С	d	f	0	1
-e	a	d	1	0	d	a	d	1	0
f	С	b	0	0	f	С	а	0	0
8	a	E	•	— ₩					

Design of Sequential Logic

Design Procedure

- From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- 2. Reduce the number of states if necessary
- 3. Assign binary values to the states
- 4. Obtain the binary-coded state table
- 5. Choose the type of flip-flops to be used
- Derive the simplified flip-flop input equations and output equations
- 7. Draw the logic diagram

Design of Clocked Sequential Circuits

Example:

Detect 3 or more consecutive 1's

State	A B
S_0	0 0
S_1	0 1
S_2	1 0
S_3	1 1

Design of Clocked Sequential Circuits

Example:

Detect 3 or more consecutive 1's

Present State		Input		ext ate	Output
\boldsymbol{A}	B	x	\boldsymbol{A}	B	y
0	0:	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Design of Clocked Sequential Circuits

Example:

Detect 3 or more consecutive 1's

Present State		Input		ext ate	Output
\boldsymbol{A}	B	x	\boldsymbol{A}	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Synthesis using *D* Flip-Flops

$$A(t+1) = D_A(A, B, x)$$

$$= \sum (3, 5, 7)$$

$$B(t+1) = D_B(A, B, x)$$

$$= \sum (1, 5, 7)$$

$$y(A, B, x) = \sum (6, 7)$$

Design of Clocked Sequential Circuits with D F.F.

Example:

Detect 3 or more consecutive 1's

Synthesis using *D* Flip-Flops

$$D_{A}(A, B, x) = \sum (3, 5, 7)$$

$$= A x + B x$$

$$D_{B}(A, B, x) = \sum (1, 5, 7)$$

$$= A x + B'x$$

$$y(A, B, x) = \sum (6, 7)$$

$$= A B$$

Design of Clocked Sequential Circuits with D F.F.

Example:

Detect 3 or more consecutive 1's

Synthesis using *D* Flip-Flops

$$D_A = A x + B x$$

$$D_B = A x + B x$$

$$y = A B$$

Flip-Flop Excitation Tables

Present State	Next State	F.F. Input
	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Next State	F.F. Input	
Q(t)	Q(t+1)	J K	0 0 (No change)
0	0	0 x	0 1 (Reset) 1 0 (Set)
0	1	1 x	1 1 (Toggle)
1	0	x 1	0 1 (Reset) 1 1 (Toggle)
1	1	x 0	0 0 (No change)
			1 0 (Set)

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Design of Clocked Sequential Circuits with JK F.F.

Example:

Detect 3 or more consecutive 1's

Present State		Input	Next State		Flip-Flop Inputs			
\boldsymbol{A}	B	\boldsymbol{x}	\boldsymbol{A}	B	J_A	K_{A}	J_B	K_{B}
0		····•• 0·····	>(0)	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	0	0	X	X	1
0	1	1	1	0	1	X	X	1
1	0	0	0	0	X	1	0	X
1	0	1	1	1	X	0	1	X
1	1	0	0	0	X	1	X	1
1	1	1	1	1	X	0	X	0

Synthesis using *JK* F.F.

$$J_{A}(A, B, x) = \sum (3)$$

$$d_{JA}(A, B, x) = \sum (4,5,6,7)$$

$$K_{A}(A, B, x) = \sum (4,6)$$

$$d_{KA}(A, B, x) = \sum (0,1,2,3)$$

$$J_{B}(A, B, x) = \sum (1,5)$$

$$d_{JB}(A, B, x) = \sum (2,3,6,7)$$

$$K_{B}(A, B, x) = \sum (2,3,6)$$

$$d_{KB}(A, B, x) = \sum (0,1,4,5)$$

Design of Clocked Sequential Circuits with JK F.F.

Example:

Detect 3 or more consecutive 1's

Synthesis using *JK* Flip-Flops

$$J_A = B x$$
 $K_A = x'$
 $J_B = x$ $K_B = A' + x'$

Design of Clocked Sequential Circuits with T F.F.

Example:

Detect 3 or more consecutive 1's

Present State		Input	Next State		Inniifi			F. put
\boldsymbol{A}	B	\boldsymbol{x}	\boldsymbol{A}	B	T_{A}	T_{B}		
0	0	0	> 0	0	0	0		
0	0	1	0	1	0	1		
0	1	0	0	0	0	1		
0	1	1	1	0	1	1		
1	0	0	0	0	1	0		
1	0	1	1	1	0	1		
1	1	0	0	0	1	1		
1	1	1	1	1	0	0		

Synthesis using *T* Flip-Flops

$$T_A(A, B, x) = \sum (3, 4, 6)$$

 $T_B(A, B, x) = \sum (1, 2, 3, 5, 6)$

Design of Clocked Sequential Circuits with T F.F.

Example:

Detect 3 or more consecutive 1's

Synthesis using T Flip-Flops

$$T_A = A x' + A'B x$$
$$T_B = A'B + B \oplus x$$

Design of a Binary Counter

Problem Specification:

Design a circuit that counts up from 0 to 7 then back to 0

$$000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$$

When reaching 7, the counter goes back to 0 then goes up again

- There is no input to the circuit
- The counter is incremented each cycle
- The output of the circuit is the present state (count value)
- The circuit should be designed using D-type Flip-Flops

Designing the State Diagram

- Eight states are needed to store the count values 0 to 7
- ❖ No input, state transition happens at the edge of each cycle

Three Flip-Flops are required for the eight states

Each state is assigned a unique binary count value

State Table

Only two columns: Present State and Next State

State changes each cycle

Present State Q ₂ Q ₁ Q ₀	Next State D ₂ D ₁ D ₀
0 0 0	0 0 1
0 0 1	0 1 0
0 1 0	0 1 1
0 1 1	1 0 0
1 0 0	1 0 1
1 0 1	1 1 0
1 1 0	1 1 1
1 1 1	0 0 0

Deriving the Next State Equations

Presei Q ₂ (_	Next State D ₂ D ₁ D ₀					
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

3-Bit Counter Circuit Diagram

Design Example: 3-bit Binary Counter Using T FFs.

State Diagram and State Table of 3-bit Binary Counter

State Diagram

Excitation Table

Q(t)	Q(t+1)	Т
0	0	0 1
1	0	1

State Table

_	
Next State A ₂ A ₁ A ₀	$\frac{\text{Flip-Flop Inputs}}{T_{A2} T_{A1} T_{A0}}$
-0-θ-1	0 0 1
0 1 0 🕇	0 1 1
0 1 1	0 0 1
1 0 0	1 1 1
1 0 1	0 0 1
1 1 0	0 1 1
1 1 1	0 0 1
0 0 0	1 1 1
	A ₂ A ₁ A ₀ O 0 1 0 O 1 1 1 0 0 1 0 1 1 1 0

Refer to T-FF Excitation Table

Design Example: 3-bit Binary Counter Using T FFs.

K-Map Logic Simplification for 3-bit Binary Counter

Design Example: 3-bit Binary Counter Using T FFs.

Draw the 3-bit Binary Counter Circuits with T FFs

Up/Down Counter with Enable

- ❖ Problem: Design a synchronous up-down T flip-flop 2-bit binary counter with a select input line S and a count enable En input. When S = 0, the counter counts down; and when S = 1, the counter counts up. When En = 1, the counter is in normal up- or down- counting; and En = 0 for disabling both counts.
- **Solution**: Required mode of operation:

Inp	uts	Operation				
En	Inputs En S 0 x 1 0	Operation				
0	Х	Hold status				
1	0	Count Down				
1	1	Count Up				

State Diagram/Table for 2-bit Up-Down Binary Counter

Arc Label: EnS

	751: 51		
	7 Flip-Flop		
Q(t)	Q(t+1)	T	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Pres	sent S	State		Inp	outs	Ne	xt St	ate	т пір-п	ops
No	Q1	Q0	1	En	S	No	Q1	Q0	T _{O1}	T_{oo}
0	0	0		0	0	0	0	0	0	0
0	0	0		0	1	0	0	0	0	0
0	0	0		1	0	3	1	1	1	1
0	0	0		1	1	1	0	1	0	1
1	0	1		0	0	1	0	1	0	0
1	0	1		0	1	1	0	1	0	0
1	0	1		1	0	0	0	0	0	1
1	0	1		1	1	2	1	0	1	1
2	1	0		0	0	2	1	0	0	0
2	1	0		0	1	2	1	0	0	0
2	1	0		1	0	1	0	1	1	1
2	1	0		1	1	3	1	1	0	1
3	1	1		0	0	3	1	1	0	0
3	1	1		0	1	3	1	1	0	0
3	1	1		1	0	2	1	0	0	1
3	1	1		1	1	0	0	0	1	1

T flin-flone

Input Equations for 2-bit Up-Down Binary Counter

ENS Q ₁ Q ₀	00	01	11	10
00	0	0	0	1
01	0	0	1	0
11	0	0	1	0
10	0	0	0	1

$$T_{Q1} = Q_0 EnS + Q_0 'EnS'$$

EnS 00 01 11 10

 $Q_1 Q_0$

00 0 0 1 1

01 0 0 1 1

11 0 0 0 1 1

$$T_{Q0} = En$$

The carry out signals:

CO_{up} and CO_{down}

$$CO_{up} = Q_0Q_1EnS \rightarrow counter reached 11 and it is counting up$$

$$CO_{down} = Q_0'Q_1'EnS'$$
 \rightarrow counter reached 00 and it is counting down

Circuit for 2-bit Up-Down Binary Counter

Dealing with Unused States

- An n-bit counter has 2n states, but there are occasions when we wish to use less than the total number of states available.
- The unused states may be treated as "don't care" conditions (or assigned to specific next states).
- ❖ Because outside interference may land the counter in these states, we must ensure that the counter can find its way back to a valid state.

Dealing with Unused States

Self-correcting counter

- ♦ Ensure that when a counter enter one of its unused states, it eventually goes into one of the valid states after one or more clock pulses so it can resume normal operation.
- Analyze the counter to determine the next state from an unused state after it is designed
- If the unused states are assigned specific next states, this ensures that the circuit is self correcting by design
- ♦ An alternative design could use additional logic to direct every unused state to a specific next state.

Design your counters to be self-starting

- ♦ Draw all states in the state diagram
- → Fill in the entire state-transition table
- ♦ May limit your ability to exploit don't cares
 - Choose startup transitions that minimize the logic

Counters with unused states

State Table for Counter

Present State		Next State			Flip-Flop Inputs						
A	В	c	A	В	C	JA	KA	JΒ	KB	Jc	Kc
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	O	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	O	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X

K-Maps for JK Flip Flop Inputs

A^{I}	BC 00	01	11	10	-
0		1	X	X	т
1		1	X	X	J_{E}

A^{E}	3C	00	01	11	10	
0		1	X	X		т
1		1	X	X		J_{C}

A	3C 00	01	11	10
0	X	X	X	1
1	X	X	X	1

$$K_B = 1$$

A	30	00	01	11	10	
0		X	1	X	X	V -1
1		X	1	X	X	$K_C = 1$

$J_C = B'$

A	3C	00	01	11	10	
0		X	1	X	X	
1		X	1	X	X	
	l					

01

X

X

11

Χ

 \mathbf{X}

10

$$K_C = 1$$

Counter with unused states

State Table for Counter

Present State		Nex	ct St	ate	Flip-Flop Inputs				uts		
A	В	c	A	В	C	JA	K _A	J _B	K _B	Jc	Kc
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	X
1	0	0	1	0	1	X	0	0	X	1	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X

$$J_A = B$$
 $K_A = B$
 $J_B = C$ $K_B = 1$

$$J_C = B' K_C = 1$$

Example: 5-state counter

- Counter repeats 5 states in sequence
 - ♦ Sequence is 000, 010, 011, 101, 110, 000

Step 1: State diagram

Step 2: State transition table
Assume D flip-flops

Present State			Next State				
	С	В	Α	C+	<u>B</u> +	A+	
,	0	0	0	0	1	0	
	0	0	1	Χ	Χ	Χ	
	0	1	0	0	1	1	
	0	1	1	1	0	1	
	1	0	0	Χ	Χ	Χ	
	1	0	1	1	1	0	
	1	1	0	0	0	0	
	1	1	1	Χ	Χ	Χ	

Example: 5-state counter

Step 3: Encode next state functions

Example: 5-state counter

Step 4: Implement the design

Recall that a D flip flop also produces Q' so A', B', and C' would all be available without any extra inverters

Is our design robust?

What if the counter starts in a 111 state?

5-state counter

❖ Back-annotate our design to check it

Present State Next State

	С	В	Α	C+	B+	A+
	0	0	0	0	1	0
	0	0	1	1	1	0
	0	1	0	0	1	1
	0	1	1	1	0	1
	1	0	0	0	1	0
	1	0	1	1	1	0
	1	1	0	0	0	0
A+ = BC'	1	1	1	1	0	0

B + = B' + A'C'

C+=A

The proper methodology is to **design** your counter to be self-starting